In this PySpark tutorial, we will discuss how to get sum of single column/ multiple columns in two ways in an PySpark DataFrame.
Introduction:
DataFrame in PySpark is an two dimensional data structure that will store data in two dimensional format. One dimension refers to a row and second dimension refers to a column, So It will store the data in rows and columns.
Let's install pyspark module before going to this. The command to istall any module in python is "pip".
Syntax:
pip install module_name
Installing PySpark:
pip install pyspark
Output:
![]()
Steps to create dataframe in PySpark:
1. Import the below modules
import pyspark
from pyspark.sql import SparkSession
2. Create spark app named tutorialsinhand using getOrCreate() method
Syntax:
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
3. Create list of values for dataframe
4. Pass this list to createDataFrame() method to create pyspark dataframe
Syntax:
spark.createDataFrame(list of values)
Let's see the methods.
Method -1 : Using select()
sum() is an aggregate function used to get the total value from the given column in the PySpark DataFrame.
We have to import sum() method from pyspark.sql.functions
from pyspark.sql.functions import sum
Syntax:
dataframe.select(sum("column_name"),.............)
where, column_name is the column sum is returned.
Example 1:
In this example, we created pyspark dataframe with 5 rows and three columns and will get the total sum in marks column.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan kumar','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#import sum function
from pyspark.sql.functions import sum
#display sum of marks
print(data.select(sum("marks")).collect())
Output:
We are collecting the output with collect() method.
[Row(sum(marks)=455)]
Example 2:
In this example, we created pyspark dataframe with 5 rows and three columns and will get the total sum in marks and rollno column.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan kumar','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#import sum function
from pyspark.sql.functions import sum
#display sum of marks and rollno
print(data.select(sum("marks"),sum("rollno")).collect())
Output:
Sum of marks and rollno columns is returned.
[Row(sum(marks)=455, sum(rollno)=15)]
Method -2 : Using agg()
agg() stands for aggregation which will take dictionary in which key will be th column and value will be the sum function. It will return sum of particular column provided as key
Syntax:
dataframe.agg({'column_name': 'sum',............})
where, column_name is the column sum is returned.
Example:
In this example, we created pyspark dataframe with 5 rows and three columns and will get the total sum in marks and rollno column.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan kumar','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#display sum of marks and rollno
data.agg({'marks': 'sum','rollno': 'sum'}).collect()
Output:
Sum of marks and rollno columns is returned.
[Row(sum(rollno)=15, sum(marks)=455)]
Would you like to see your article here on tutorialsinhand.
Join
Write4Us program by tutorialsinhand.com
About the Author
Gottumukkala Sravan Kumar 171FA07058
B.Tech (Hon's) - IT from Vignan's University.
Published 1400+ Technical Articles on Python, R, Swift, Java, C#, LISP, PHP - MySQL and Machine Learning
Page Views :
Published Date :
Jun 12,2023