Articles

PySpark - select()

PySpark - select()


In this PySpark tutorial, we will discuss how to use select() method to display particular columns in PySpark DataFrame. 

Introduction:

DataFrame in PySpark is an two dimensional data structure that will store data in two dimensional format. One dimension refers to a row and second dimension refers to a column, So It will store the data in rows and columns.

Let's install pyspark module before going to this. The command to install any module in python is "pip".

Syntax:

pip install module_name

Installing PySpark:

pip install pyspark

Steps to create dataframe in PySpark:

1. Import the below modules

      import pyspark
      from pyspark.sql import SparkSession

2. Create spark app named tutorialsinhand using getOrCreate() method

     Syntax:

     spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()

3. Create list of values for dataframe

4. Pass this list to createDataFrame() method to create pyspark dataframe

    Syntax:
    spark.createDataFrame(list of values)

Let's create PySpark DataFrame with 5 rows and 3 columns.

# import the below modules
import pyspark
from pyspark.sql import SparkSession

# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()

#create a  list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},

        {'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},

        {'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},

        {'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},

        {'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]


# create the dataframe from the values
data = spark.createDataFrame(values)


#display dataframe
data.show()

Output:

PySpark DataFrame - output:

+-----+------+-------------------+
|marks|rollno|       student name|
+-----+------+-------------------+
|   98|     1|Gottumukkala Sravan|
|   89|     2| Gottumukkala Bobby|
|   90|     3|        Lavu Ojaswi|
|   78|     4|       Lavu Gnanesh|
|  100|     5|  Chennupati Rohith|
+-----+------+-------------------+

Method - 1 : Using column names

Here, we have to specify the column names directly inside select() method.

Syntax:

dataframe.select('column1','column2',...............)

where, column1,column2 are the column names.

Example:

In this example, we will select 'student name' and 'marks' columns

# import the below modules
import pyspark
from pyspark.sql import SparkSession

# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()

#create a  list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},

        {'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},

        {'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},

        {'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},

        {'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]


# create the dataframe from the values
data = spark.createDataFrame(values)


#display 'student name' and 'marks' columns
data.select('student name','marks').show()

Output:

'student name' and 'marks' columns were displayed.

+-------------------+-----+
|       student name|marks|
+-------------------+-----+
|Gottumukkala Sravan|   98|
| Gottumukkala Bobby|   89|
|        Lavu Ojaswi|   90|
|       Lavu Gnanesh|   78|
|  Chennupati Rohith|  100|
+-------------------+-----+

Method - 2 : Using column names with DataFrame

Here, we have to specify the column names inside select() method with dataframe name.

Syntax:

dataframe.select(dataframe['column1'],dataframe['column2'],...............)

where, column1,column2 are the column names.

Example:

In this example, we will select 'student name' and 'marks' columns

# import the below modules
import pyspark
from pyspark.sql import SparkSession

# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()

#create a  list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},

        {'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},

        {'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},

        {'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},

        {'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]


# create the dataframe from the values
data = spark.createDataFrame(values)


#display 'student name' and 'marks' columns
data.select(data['student name'],data['marks']).show()

Output:

'student name' and 'marks' columns were displayed.

+-------------------+-----+
|       student name|marks|
+-------------------+-----+
|Gottumukkala Sravan|   98|
| Gottumukkala Bobby|   89|
|        Lavu Ojaswi|   90|
|       Lavu Gnanesh|   78|
|  Chennupati Rohith|  100|
+-------------------+-----+

We can also use '.' operator to access columns by specifying dataframe.

But make sure that there are no spaces between strings in column name.

Syntax:

dataframe.select(dataframe.column1,dataframe.column2,...............)

where, column1,column2 are the column names.

Example:

In this example, we will select 'rollno' and 'marks' columns

# import the below modules
import pyspark
from pyspark.sql import SparkSession

# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()

#create a  list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},

        {'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},

        {'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},

        {'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},

        {'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]


# create the dataframe from the values
data = spark.createDataFrame(values)


#display 'rollno' and 'marks' columns
data.select(data.rollno,data.marks).show()

Output:

+------+-----+
|rollno|marks|
+------+-----+
|     1|   98|
|     2|   89|
|     3|   90|
|     4|   78|
|     5|  100|
+------+-----+

 


pyspark

Would you like to see your article here on tutorialsinhand. Join Write4Us program by tutorialsinhand.com

About the Author
Gottumukkala Sravan Kumar 171FA07058
B.Tech (Hon's) - IT from Vignan's University. Published 1400+ Technical Articles on Python, R, Swift, Java, C#, LISP, PHP - MySQL and Machine Learning
Page Views :    Published Date : Jun 12,2023  
Please Share this page

Related Articles

Like every other website we use cookies. By using our site you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Service. Learn more Got it!