PySpark - sumDistinct(), countDistinct()
In this PySpark tutorial, we will discuss how to use sumDistinct() and countDistinct() methods on PySpark DataFrame.
Introduction:
DataFrame in PySpark is an two dimensional data structure that will store data in two dimensional format. One dimension refers to a row and second dimension refers to a column, So It will store the data in rows and columns.
Let's install pyspark module before going to this. The command to install any module in python is "pip".
Syntax:
pip install module_name
Installing PySpark:
pip install pyspark
Steps to create dataframe in PySpark:
1. Import the below modules
import pyspark
from pyspark.sql import SparkSession
2. Create spark app named tutorialsinhand using getOrCreate() method
Syntax:
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
3. Create list of values for dataframe
4. Pass this list to createDataFrame() method to create pyspark dataframe
Syntax:
spark.createDataFrame(list of values)
sumDistinct() is used to return total sum of the column without adding duplicate values.
Example:
If a column contains values - 1,2,3,2,3 , then it will add - 1+2+3 = 6(because, 2 and 3 are duplicated).
We have to import ot from pyspark.sql.functions module.
Syntax:
from pyspark.sql.functions import sumDistinct
It can be used with select() method.
Syntax:
dataframe.select(sumDistinct('column_name'),.............)
where, column_name is the column to get sum without considering duplicates.
Example:
In this example, we are creating pyspark dataframe with 11 rows and 3 columns and get the distinct sum from rollno and marks column.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#display dataframe
data.show()
#import sumDistinct
from pyspark.sql.functions import sumDistinct
#return distinct sum from marks and rollno column
data.select(sumDistinct('marks'),sumDistinct('rollno')).show()
Output:
Distinct sum from marks and rollno columns is returned.
+-----+------+-------------------+
|marks|rollno| student name|
+-----+------+-------------------+
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 90| 3| Lavu Ojaswi|
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 100| 5| Chennupati Rohith|
| 100| 5| Chennupati Rohith|
+-----+------+-------------------+
+-------------------+--------------------+
|sum(DISTINCT marks)|sum(DISTINCT rollno)|
+-------------------+--------------------+
| 455| 15|
+-------------------+--------------------+
countDistinct() is used to return total count of the column without considering duplicate values.
Example:
If a column contains values - 1,2,3,2,3 , then it will count- 1,2,3 = so 3. (because, 2 and 3 are duplicated).
We have to import ot from pyspark.sql.functions module.
Syntax:
from pyspark.sql.functions import countDistinct
It can be used with select() method.
Syntax:
dataframe.select(countDistinct('column_name'),.............)
where, column_name is the column to get count without considering duplicates.
Example:
In this example, we are creating pyspark dataframe with 11 rows and 3 columns and get the distinct count from rollno and marks column.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#display dataframe
data.show()
#import countDistinct
from pyspark.sql.functions import countDistinct
#return distinct count from marks and rollno column
data.select(countDistinct('marks'),countDistinct('rollno')).show()
Output:
Distinct count from marks and rollno columns is returned.
+-----+------+-------------------+
|marks|rollno| student name|
+-----+------+-------------------+
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 90| 3| Lavu Ojaswi|
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 100| 5| Chennupati Rohith|
| 100| 5| Chennupati Rohith|
+-----+------+-------------------+
+---------------------+----------------------+
|count(DISTINCT marks)|count(DISTINCT rollno)|
+---------------------+----------------------+
| 5| 5|
+---------------------+----------------------+
Would you like to see your article here on tutorialsinhand.
Join
Write4Us program by tutorialsinhand.com
About the Author
Gottumukkala Sravan Kumar 171FA07058
B.Tech (Hon's) - IT from Vignan's University.
Published 1400+ Technical Articles on Python, R, Swift, Java, C#, LISP, PHP - MySQL and Machine Learning
Page Views :
Published Date :
Jun 14,2024