Rename columns in PySpark DataFrame
In this PySpark tutorial, we will discuss how to rename single/multiple columns in PySpark DataFrame.
Introduction:
DataFrame in PySpark is an two dimensional data structure that will store data in two dimensional format. One dimension refers to a row and second dimension refers to a column, So It will store the data in rows and columns.
Let's install pyspark module before going to this. The command to install any module in python is "pip".
Syntax:
pip install module_name
Installing PySpark:
pip install pyspark
Steps to create dataframe in PySpark:
1. Import the below modules
import pyspark
from pyspark.sql import SparkSession
2. Create spark app named tutorialsinhand using getOrCreate() method
Syntax:
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
3. Create list of values for dataframe
4. Pass this list to createDataFrame() method to create pyspark dataframe
Syntax:
spark.createDataFrame(list of values)
Using withColumnRenamed()
This function is used to rename single or multiple columns at a time.
Syntax:
dataframe.withColumnRenamed("old_name","new_name")
where,
old_name is the actual column name and new_name is the new column name for actual column.
Let's create pysprark dataframe and get the columns.
we can get the columns by using printSchema() method.
Syntax:
dataframe.printSchema()
It will return the datatype along with column name.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#get the columns
print(data.printSchema())
#displau
data.show()
Output:
We can see actual columns are - marks,rollno and student name.
root
|-- marks: long (nullable = true)
|-- rollno: long (nullable = true)
|-- student name: string (nullable = true)
None
+-----+------+-------------------+
|marks|rollno| student name|
+-----+------+-------------------+
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 100| 5| Chennupati Rohith|
+-----+------+-------------------+
Example:
In this example, we will rename marks as percentage and rollno as college_roll separately.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#rename marks as percentage
data=data.withColumnRenamed('marks','percentage')
#rename rollno as college_roll
data=data.withColumnRenamed('rollno','college_roll ')
#display
data.show()
#display the schema
data.printSchema()
Output:
Column names are modified,
+----------+-------------+-------------------+
|percentage|college_roll | student name|
+----------+-------------+-------------------+
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 100| 5| Chennupati Rohith|
+----------+-------------+-------------------+
root
|-- percentage: long (nullable = true)
|-- college_roll : long (nullable = true)
|-- student name: string (nullable = true)
If we want to rename multiple columns at a time, we will use this method separated by ".".
Syntax:
dataframe.withColumnRenamed("old_name","new_name")..................withColumnRenamed("old_name","new_name")
Example:
In this example, we will rename marks as percentage and rollno as college_roll at a time.
# import the below modules
import pyspark
from pyspark.sql import SparkSession
# create an app
spark = SparkSession.builder.appName('tutorialsinhand').getOrCreate()
#create a list of data
values = [{'rollno': 1, 'student name': 'Gottumukkala Sravan','marks': 98},
{'rollno': 2, 'student name': 'Gottumukkala Bobby','marks': 89},
{'rollno': 3, 'student name': 'Lavu Ojaswi','marks': 90},
{'rollno': 4, 'student name': 'Lavu Gnanesh','marks': 78},
{'rollno': 5, 'student name': 'Chennupati Rohith','marks': 100}]
# create the dataframe from the values
data = spark.createDataFrame(values)
#rename marks as percentage and rollno as college_roll
data=data.withColumnRenamed('marks','percentage').withColumnRenamed('rollno','college_roll ')
#display
data.show()
#display the schema
data.printSchema()
Output:
Column names are modified,
+----------+-------------+-------------------+
|percentage|college_roll | student name|
+----------+-------------+-------------------+
| 98| 1|Gottumukkala Sravan|
| 89| 2| Gottumukkala Bobby|
| 90| 3| Lavu Ojaswi|
| 78| 4| Lavu Gnanesh|
| 100| 5| Chennupati Rohith|
+----------+-------------+-------------------+
root
|-- percentage: long (nullable = true)
|-- college_roll : long (nullable = true)
|-- student name: string (nullable = true)
Would you like to see your article here on tutorialsinhand.
Join
Write4Us program by tutorialsinhand.com
About the Author
Gottumukkala Sravan Kumar 171FA07058
B.Tech (Hon's) - IT from Vignan's University.
Published 1400+ Technical Articles on Python, R, Swift, Java, C#, LISP, PHP - MySQL and Machine Learning
Page Views :
Published Date :
Jun 12,2023